
CH347 Application Development Manual https://wch.cn

V1.6

CH347 Application Development Manual

V1.6

CH347 Application Development Manual https://wch.cn

V1.6 1

Catalog

1. Introduction ... 4

2. Interface description .. 4

3. Synchronous serial interface ... 5

3.1 Related data types .. 5

3.1.1 SPI controller information .. 5

3.1.2 Device information ... 6

3.2 Public operation functions ... 7

3.2.1 CH347OpenDevice... 7

3.2.2 CH347CloseDevice .. 7

3.2.3 CH347SetDeviceNotify .. 7

3.2.4 CH347GetDeviceInfor ... 8

3.2.5 CH347GetSerialNumber .. 8

3.2.6 CH347GetChipType ... 9

3.2.7 CH347GetVersion... 9

3.2.8 CH347SetTimeout .. 9

3.2.9 Interface dynamic hot plug detection ... 10

3.2.10 Device enumeration operation .. 10

3.3 SPI functions ... 11

3.3.1 Operation process ... 11

3.3.2 CH347SPI_Init ... 12

3.3.3 CH347SPI_SetFrequency ... 12

3.3.4 CH347SPI_SetDataBits .. 13

3.3.5 CH347SPI_GetCfg ... 13

3.3.6 CH347SPI_ChangeCS .. 13

3.3.7 CH347SPI_SetChipSelect .. 14

3.3.8 CH347SPI_Write .. 14

3.3.9 CH347SPI_Read .. 15

3.3.10 CH347SPI_WriteRead .. 15

3.3.11 CH347StreamSPI4 .. 16

CH347 Application Development Manual https://wch.cn

V1.6 2

3.4 JTAG functions .. 16

3.4.1 Operation process ... 16

3.4.2 CH347Jtag_INIT .. 17

3.4.3 CH347Jtag_TmsChange ... 17

3.4.4 CH347Jtag_IoScan ... 19

3.4.5 CH347Jtag_IoScanT... 19

3.4.6 CH347Jtag_Reset ... 20

3.4.7 CH347Jtag_ResetTrst ... 20

3.4.8 CH347Jtag_WriteRead ... 20

3.4.9 CH347Jtag_WriteRead_Fast .. 21

3.4.10 CH347Jtag_WriteReadEx... 21

3.4.11 CH347Jtag_WriteRead_FastEx .. 22

3.4.12 CH347Jtag_SwitchTapState ... 23

3.4.13 CH347Jtag_SwitchTapStateEx ... 23

3.4.14 CH347Jtag_ByteWriteDR .. 24

3.4.15 CH347Jtag_ByteReadDR ... 24

3.4.16 CH347Jtag_ByteWriteIR .. 24

3.4.17 CH347Jtag_ByteReadIR .. 25

3.4.18 CH347Jtag_BitWriteDR ... 25

3.4.19 CH347Jtag_BitWriteIR .. 25

3.4.20 CH347Jtag_BitReadIR ... 26

3.4.21 CH347Jtag_BitReadDR ... 26

3.5 I2C functions ... 26

3.5.1 Operation process ... 26

3.5.2 Related data types ... 27

3.5.3 CH347I2C_Set ... 27

3.5.4 CH347I2C_SetStretch .. 28

3.5.5 CH347I2C_SetDelaymS... 28

3.5.6 CH347I2C_SetDriverMode .. 28

3.5.7 CH347I2C_SetIgnoreNack ... 29

CH347 Application Development Manual https://wch.cn

V1.6 3

3.5.8 CH347I2C_SetAckClk_DelayuS ... 29

3.5.9 CH347StreamI2C ... 29

3.5.10 CH347StreamI2C_RetACK ... 30

3.5.11 CH347ReadEEPROM .. 30

3.5.12 CH347WriteEEPROM ... 31

4. Asynchronous serial interface functions .. 31

4.1 Public functions ... 31

4.1.1 Interface dynamic hot plug detection ... 31

4.1.2 Device enumeration operation .. 32

4.2 HID/VCP UART functions .. 32

4.2.1 Operation process ... 32

4.2.2 CH347Uart_Open ... 33

4.2.3 CH347Uart_Close .. 33

4.2.4 CH347Uart_SetDeviceNotify ... 33

4.2.5 CH347Uart_Init .. 34

4.2.6 CH347Uart_SetTimeout ... 34

4.2.7 CH347Uart_Read ... 35

4.2.8 CH347Uart_Write .. 35

4.2.9 CH347Uart_QueryBufUpload .. 35

4.3 GPIO functions .. 36

4.3.1 Operation process ... 36

4.3.2 CH347GPIO_Get ... 36

4.3.3 CH347GPIO_Set .. 37

4.3.4 CH347SetIntRoutine .. 37

4.3.5 CH347ReadInter ... 38

4.3.6 CH347AbortInter .. 38

CH347 Application Development Manual https://wch.cn

V1.6 4

1. Introduction

CH347 is a USB2.0 high-speed converter chip to implement USB to UART (HID serial port/VCP serial

port), USB to SPI, USB to I2C, USB to JTAG and USB to GPIO interfaces, which are included in the chip's

four working modes.

CH347DLL is used to provide UART/SPI/I2C/JTAG/BitStream interface operation functions for

CH347/CH339W chip on the OS side, and supports CH341 vendor/HID/VCP driver interfaces, so there is no

need to distinguish between driver interface and chip working mode when using it.

2. Interface description

According to the characteristics of USB converter interface supported by CH347, CH347DLL provides

interface functional functions for USB-UART (HID serial port/VCP serial port), USB-SPI, USB-I2C,

USB-JTAG, and USB-GPIO, including the basic functional function and the corresponding functional

function, such as EEPROM read/write and SHIFT-DR state read/write in JTAG application.

The CH347F can use all interfaces without switching modes, and the supported interfaces are shown in

the table below:

Functional Interface

Description
Driver Interface API

Interface0: USB2.0 to high

speed UART0
CH343SER(VCP)

Native serial port API in the system or

CH347UART_xxx in CH347DLL Interface1: USB2.0 to high

speed UART1

Interface2: USB2.0 to JTAG

+ SPI + I2C, etc.
CH347PAR

CH347SPI_xxx,CH347I2C_xxx,CH347JTAG_xxx

in CH347DLL

The following table lists the ports supported by CH347T, switching between modes via MODE

configuration pin level combinations at power-on.

Working

Mode
Functional Interface Description Driver Interface API

Mode 0

Interface 0:

USB2.0 to High-speed UART0
CH343SER(VCP)

Native UART API in the

system or CH347UART_xxx

in CH347DLL
Interface 1:

USB2.0 to High-speed UART1

Mode 1

Interface 0:

USB2.0 to High-speed UART1
CH343SER(VCP)

Native serial port API in the

system or CH347UART_xxx

in CH347DLL

Interface 1:

USB2.0 to SPI+I2C
CH347PAR

CH347SPI_xxx,

CH347I2C_xxx in

CH347DLL

CH347 Application Development Manual https://wch.cn

V1.6 5

Mode 2

Interface 0:

USB2.0 HID to High-speed UART1
HID driver

(System-provided)

CH347UART_xxx

Interface 1:

USB2.0 HID to SPI+I2C

CH347SPI_xxx,

CH347I2C_xxx in

CH347DLL

Mode 3

Interface 0:

USB2.0 to High-speed UART1
CH343SER(VCP)

Native serial port in the

system or CH347UART_xxx

in CH347DLL

Interface 1:

USB2.0 to JTAG+I2C
CH347PAR

CH347JTAG_xxx in the

CH347DLL

CH347I2C_xxx

Table. CH347 Interface function API

3. Synchronous serial interface

3.1 Related data types

// Driver interfaces

#define CH347_USB_CH341 0

#define CH347_USB_HID 2

#define CH347_USB_VCP 3

// Chip function interface number

#define CH347_FUNC_UART 0

#define CH347_FUNC_SPI_IIC 1

#define CH347_FUNC_JTAG_IIC 2

#define CH347_FUNC_JTAG_IIC_SPI 3 //CH347F

// Chip model definition

#define CHIP_TYPE_CH341 0

#define CHIP_TYPE_CH347 1

#define CHIP_TYPE_CH347F 2

#define CHIP_TYPE_CH339W 3

#define CHIP_TYPE_CH347T CHIP_TYPE_CH347

3.1.1 SPI controller information

// SPI Controller Configuration

typedef struct _SPI_CONFIG{

 UCHAR iMode; // 0-3: SPI Mode0/1/2/3

 UCHAR iClock; // 0=60MHz, 1=30MHz, 2=15MHz,

 3=7.5MHz, 4=3.75MHz, 5=1.875MHz,

 6=937.5KHz, 7=468.75KHz

 UCHAR iByteOrder; // 0= LSB, 1= MSB

 USHORT iSpiWriteReadInterval; // SPI Interface general read and write data

 command, the unit is uS

CH347 Application Development Manual https://wch.cn

V1.6 6

 UCHAR iSpiOutDefaultData; // SPI prints data by default when it reads data

 ULONG iChipSelect; // Chip selection, bit7 = 0, chip selection control is

 ignored, bit7=1, parameters valid: bit1/0 are 00/01 then

 CS1/CS2 pins are selected as low level active chip select

 respectively

 UCHAR CS1Polarity; // Bit 0: chip selection CS1 polarity control,

 0: active low; 1: active high

 UCHAR CS2Polarity; // Bit 0: chip selection CS2 polarity control,

 0: active low; 1: active high

 USHORT iIsAutoDeativeCS; // Whether to automatically undo the chip

 selection after the operation is completed

 USHORT iActiveDelay; // Delay time for performing read and write

 operations after setting the chip selection, the unit is uS.

 ULONG iDelayDeactive; // Delay time for executing read/write operations

 after undoing chip selection ,the unit is uS

}mSpiCfgS,*mPSpiCfgS;

3.1.2 Device information

typedef struct _DEV_INFOR{

UCHAR iIndex; // Currently open serial number

UCHAR DevicePath[MAX_PATH]; // Device link name, used in CreateFile.

UCHAR UsbClass; // Driver category 0:CH347_USB_CH341,

 2:CH347_USB_HID, 3:CH347_USB_VCP

 UCHAR FuncType; // Functional category 0:CH347_FUNC_UART,

 1:CH347_FUNC_SPI_I2C,2:CH347_FUNC_JTAG_I2C

3:CH347_FUNC_JTAG_IIC_SPI

CHAR DeviceID[64]; // USB\VID_xxxx&PID_xxxx

 UCHAR Mode; // Chip working mode

 0:Mode0(UART0/1),

 1:Mode1(Uart1+SPI+I2C),

 2:Mode2(HID Uart1+SPI+I2C),

 3:Mode3(Uart1+Jtag+IIC),

 4:CH347F(Uart*2+Jtag/SPI/IIC)

HANDLE DevHandle; // The device handle

USHORT BulkOutEndpMaxSize; // Bulk upload endpoint size

USHORT BulkInEndpMaxSize; // Bulk download endpoint size

UCHAR UsbSpeedType; // USB speed type, 0: FS, 1: HS, 2: SS

UCHAR CH347IfNum; // USB interface number: CH347T:

MODE0: 0:UART0; 2:UART1

 MODE1: 0:UART1; 2:SPI/IIC/GPIO

 MODE2: 0:UART0; 1:SPI/IIC/GPIO

 MODE3: 0:UART1; 2:JTAG

 CH347F: 0:UART0; 2:UART1; 4:SPI/IIC/JTAG/GPIO

 CH339W: 0:UART; 2:SPI/IIC/JTAG

UCHAR DataUpEndp; // Bulk upload endpoint address

CH347 Application Development Manual https://wch.cn

V1.6 7

UCHAR DataDnEndp; // Bulk download endpoint address

CHAR ProductString[64]; // USB product string

CHAR ManufacturerString[64]; // USB vendor string

ULONG WriteTimeout; // USB write timeout

ULONG ReadTimeout; // USB read timeout

CHAR FuncDescStr[64]; // Interface functional descriptor

UCHAR FirewareVer; // Firmware version, hexadecimal value

}mDeviceInforS,*mPDeviceInforS

3.2 Public operation functions

3.2.1 CH347OpenDevice

Function description

This function is used to turn on CH347 device, supports the opening of SPI/I2C/JTAG interfaces in all

modes of CH347.

Function definitions

HANDLE WINAPI

CH347OpenDevice(ULONG DevI);

Parameter description

DevI: Specify the serial number of the operating device

Return value

Returns the device serial number if the execution is successful.

3.2.2 CH347CloseDevice

Function description

This function is used to close CH347 device, you can disable SPI/I2C/JTAG interfaces in all CH347

modes.

Function definitions

BOOL WINAPI

CH347CloseDevice(ULONG iIndex)

Parameter description

iIndex: Specify the serial number of the operating device

Return value

The return value is 1 on success and 0 on failure

3.2.3 CH347SetDeviceNotify

Function description

This function is used to specify the device event notification function, it can be used for dynamic hot

plug detection of SPI/I2C/JTAG interfaces in all modes of CH347.

Function definitions

BOOL WINAPI

 CH347SetDeviceNotify(ULONG iIndex,

 PCHAR iDeviceID,

 mPCH347_NOTIFY_ROUTINE iNotifyRoutine)

Parameter descriptions

iIndex: Specify the serial number of the operating device

CH347 Application Development Manual https://wch.cn

V1.6 8

iDeviceID: Optional parameter, pointing to a string, specifies the ID of the monitored device,

the string terminated with \0.

iNotifyRoutine: Specify the device event callback program. If it is NULL, event notification is

cancelled. Otherwise the program is called when the event is detected.

Return value

The return value is 1 on success and 0 on failure

Annotations

iDeviceID is a variable parameter. To implement CH347 device hot plug detection, you can define

macros as follows

#define CH347DevID "VID_1A86&PID_55D\0"

During parameter transmission, replace iDeviceID with CH347DevID to implement dynamic hot plug

detection for CH347 synchronous serial interface.

To accurately detect the plugging and unplugging action actions of interfaces in each mode, write down

the complete USBID, taking the SPI interface in mode 1 as an example, you can define the following macro.

#define USBID_VEN_SPI_I2C "VID_1A86&PID_55DB&MI_02\0"

During parameter transmission, replace iDeviceID with USBID_VEN_SPI_I2C to implement dynamic

hot plug detection for SPI&I2C interfaces in CH347 mode 1.

For other interface settings, see 3.2.9 Interface dynamic hot plug detection.

3.2.4 CH347GetDeviceInfor

Function description

This function is used to get the current interface mode and VID/PID of the device.

Function definitions

BOOL WINAPI

CH347GetDeviceInfor(ULONG iIndex,

mDeviceInforS *DevInformation)

Parameter descriptions

iIndex: Specify the serial number of the operating device

DevInformation: Device information structure

Return value

The return value is 1 on success and 0 on failure

Annotations

Device information structure, see _DEV_INFOR

3.2.5 CH347GetSerialNumber

Function description

This function is used to get the USB serial number of the device.

Function definitions

BOOL WINAPI

CH347GetSerialNumber(ULONG iIndex,

PUCHAR iSerialNumberStr)

Parameter descriptions

iIndex: Specify the serial number of the operating device

CH347 Application Development Manual https://wch.cn

V1.6 9

iSerialNumberStr: Point to the obtained device serial number

Return value

The return value is 1 on success and 0 on failure

3.2.6 CH347GetChipType

Function description

This function is used to get CH347 type:

0:CHIP_TYPE_CH341,

1:CHIP_TYPE_CH347/CHIP_TYPE_CH347T,

2:CHIP_TYPE_CH347F,

3:CHIP_TYPE_CH339W.

Function definitions

BOOL WINAPI

CH347GetChipType(ULONG iIndex)

Parameter descriptions

iIndex: Specify the serial number of the operating device

Return value

The return value is 1 on success and 0 on failure

Annotations

Return UCHAR type, meaning refers to the definition of the reference chip model.

3.2.7 CH347GetVersion

Function description

This function is used to get driver version, library version, device version, chip type (CH341(FS)/

CH347HS).

Function definitions

BOOL WINAPI

CH347GetVersion(ULONG iIndex,

PUCHAR iDriverVer,

PUCHAR iDLLVer,

PUCHAR ibcdDevice,

PUCHAR iChipType)

Parameter descriptions

iIndex: Specify the serial number of the operating device

iDriverVer: Driver version information

iDLLVer: Library version information

ibcdDevice: Device version information

iChipType: The chip type

Return value

The return value is 1 on success and 0 on failure.

3.2.8 CH347SetTimeout

Function description

This function is used to set timeout for USB data reads and writes.

Function definitions

BOOL WINAPI

CH347 Application Development Manual https://wch.cn

V1.6 10

CH347SetTimeout(ULONG iIndex,

ULONG iWriteTimeout,

ULONG iReadTimeout)

Parameter descriptions

iIndex: Specify the serial number of the operating device

iWriteTimeout: Specify the timeout for USB write-out data blocks, the unit is millisecond (mS),

0xFFFFFFFF specifies no timeout (default)

iReadTimeout: Specify the timeout for USB read data blocks, the unit is millisecond (mS),

0xFFFFFFFF specifies no timeout (default)

Return value

The return value is 1 on success and 0 on failure

3.2.9 Interface dynamic hot plug detection

Detection of synchronous serial interface dynamic hot plug information can be achieved through the

CH347SetDeviceNotify function, the code reference is as follows.

Enable the monitoring of USB plug and unplug of CH347 synchronous serial port:

CH347SetDeviceNotify (DevIndex, USBDevID, UsbDevPnpNotify);

Disable the monitoring of USB plug and unplug on CH347 synchronous serial port, be sure to close the

program when it exits.

CH347SetDeviceNotify(DevIndex, USBDevID, NULL);

// CH347 device hot plug detection notification program

VOID CALLBACK UsbDevPnpNotify (ULONG iEventStatus)

{

 // Device plug event, already plugged

if(iEventStatus==CH347_DEVICE_ARRIVAL)

 PostMessage(DebugHwnd,WM_CH347DevArrive,0,0);

// Device unplug event, already unplugged

 else if(iEventStatus==CH347_DEVICE_REMOVE)

 PostMessage(DebugHwnd,WM_CH347DevRemove,0,0);

 return;

}

To accurately detect the SPI/I2C/JTAG interface plug and unplug information in each mode, write the

following complete USBID. Replace iDeviceID with the corresponding USBID macro when using

CH347SetDeviceNotify.

//MODE1 SPI/I2C

#define USBID_VEN_Mode1_SPI_I2C "VID_1A86&PID_55DB&MI_02\0"

//MODE2 SPI/I2C

#define USBID_HID_Mode2_SPI_I2C "VID_1A86&PID_55DC&MI_01\0"

//MODE3 JTAG/I2C

#define USBID_VEN_Mode3_JTAG_I2C "VID_1A86&PID_55DA&MI_02\0"

3.2.10 Device enumeration operation

In this library, the API implements corresponding operations by specifying device serial numbers. The

CH347 Application Development Manual https://wch.cn

V1.6 11

device serial number is generated based on the sequence of devices being inserted one by one. The device

enumeration function can be implemented by opening the corresponding device serial number through the

device Open function and determining whether the device exists and is valid according to the return value of

the function.

The SPI/I2C/JTAG interface is turned on/off by CH347OpenDevice/ CH347CloseDevice.

Figure 3.2.8 Device enumeration flowchart

3.3 SPI functions

3.3.1 Operation process

After the device is enabled, set the device USB read and write timeout parameters, configure the SPI

controller parameters for SPI initialization settings, after successful setup, you can communicate with the

device by calling the SPI read and write function.

The function call flowchart is as follows:

CH347 Application Development Manual https://wch.cn

V1.6 12

Figure 3.3.1 SPI Function operation flowchart

For details about the function, see the following.

3.3.2 CH347SPI_Init

Function description

This function is used to configure parameters on the SPI controller.

Function definitions

BOOL WINAPI

CH347SPI_Init(ULONG iIndex,

mSpiCfgS *SpiCfg)

Parameter descriptions

iIndex: Specify the serial number of the operating device

SpiCfg: SPI controller configuration

Return value

The return value is 1 on success and 0 on failure

Annotations

For the configuration of the SPI controller, see structure _SPI_CONFIG

3.3.3 CH347SPI_SetFrequency

Function description

This function is used to set the SPI clock frequency, and after calling this interface, you need to call

CH347SPI_Init again for reinitialisation.

Function definitions

BOOL WINAPI

CH347SPI_SetFrequency(ULONG iIndex,

ULONG iSpiSpeedHz)

Parameter descriptions

CH347 Application Development Manual https://wch.cn

V1.6 13

iIndex: Specify the serial number of the operating device

iSpiSpeedHz: Set the SPI clock, with the unit in Hz

Return value

The return value is 1 on success and 0 on failure

Annotations

The supported clock frequencies are as follows (if there is no corresponding frequency, select the

nearest one):

60 MHz, 48 MHz, 36 MHz, 30 MHz, 28 MHz, 24 MHz, 18 MHz, 15 MHz, 14 MHz, 12 MHz, 9 MHz,

7.5 MHz, 7 MHz, 6 MHz, 4.5 MHz, 3.75 MHz, 3.5 MHz, 3 MHz, 2.25 MHz, 1.875 MHz, 1.75 MHz, 1.5

MHz, 1.125 MHz, 937.5 KHz, 875 KHz, 750 KHz, 562.5 KHz, 468.75 KHz, 437.5 KHz, 375 KHz, 281.25

KHz, 218.75 KHz

3.3.4 CH347SPI_SetDataBits

Function description

This function is used to set the number of bits of SPI supported data for the CH347F

Function definitions

BOOL WINAPI

CH347SPI_SetDataBits(ULONG iIndex,

 UCHAR iDataBits)

Parameter descriptions

iIndex: Specify the serial number of the operating device

iDataBits: SPI data bits, 0 means 8bit, 1 means 16bit

Return value

The return value is 1 on success and 0 on failure

3.3.5 CH347SPI_GetCfg

Function description

This function is used to get the current configuration of the SPI controller.

Function definitions

BOOL WINAPI

CH347SPI_GetCfg(ULONG iIndex,

SpiCfgS *SpiCfg)

Parameter descriptions

iIndex: Specify the serial number of the operating device

SpiCfg: SPI controller configuration

Return value

The return value is 1 on success and 0 on failure

Annotations

For the configuration of the SPI controller, see structure _SPI_CONFIG

3.3.6 CH347SPI_ChangeCS

Function description

This function is used to set the chip selection status, you need to call CH347SPI_Init to set the CS

before use

Function definitions

BOOL WINAPI

CH347 Application Development Manual https://wch.cn

V1.6 14

CH347SPI_ChangeCS(ULONG iIndex,

UCHAR iStatus)

Parameter descriptions

iIndex: Specify the serial number of the operating device

iStatus: 0 = Undo chip selection, 1 = Set chip selection

Return value

The return value is 1 on success and 0 on failure

3.3.7 CH347SPI_SetChipSelect

Function description

This function is used to set the SPI chip selection.

Function definitions

BOOL WINAPI

CH347SPI_SetChipSelect(ULONG iIndex,

USHORT iEnableSelect,

USHORT iChipSelect,

ULONG iIsAutoDeativeCS,

ULONG iActiveDelay,

ULONG iDelayDeactive);

Parameter descriptions

iIndex: Specify the serial number of the operating device

iEnableSelect: The lower 8 bits are CS1 and the higher 8 bits are CS2;

byte value of 0= set CS, 1= ignore this CS setting

iChipSelect: The lower octet is CS1 and the higher octet is CS2. Piece of selected output,

0= Undo chip selection, 1=set chip selection

iIsAutoDeativeCS: The lower 16 bits are CS1, the higher 16 bits are CS2; whether to undo chip

selection automatically after the operation is complete.

iActiveDelay: The lower 16 bits are CS1, the higher 16 bits are CS2;

Delay time for performing read and write operations after setting the chip

selection, the unit is uS.

iDelayDeactive: The lower 16 bits are CS1, the higher 16 bits are CS2;

delay time for read and write operations after chip selection is unselected, the

unit is uS.

Return value

The return value is 1 on success and 0 on failure

3.3.8 CH347SPI_Write

Function description

This function is used to the SPI write data

Function definitions

BOOL WINAPI

CH347SPI_Write(ULONG iIndex,

ULONG iChipSelect,

ULONG iLength,

ULONG iWriteStep,

PVOID ioBuffer);

CH347 Application Development Manual https://wch.cn

V1.6 15

Parameter descriptions

iIndex: Specify the serial number of the operating device

iChipSelect: Chip selection, bit 7 is 0 to ignore chip select control, bit 7 is 1 for chip select

operation.

iLength: Number of bytes of data to be transferred

iWriteStep: The length of a single block to be read

ioBuffer: Point to a buffer, place the data to be written-out from MOSI

Return value

The return value is 1 on success and 0 on failure

3.3.9 CH347SPI_Read

Function description

This function is used to read SPI data

Function definitions

BOOL WINAPI

CH347SPI_Read(ULONG iIndex,

ULONG iChipSelect,

ULONG oLength,

PULONG iLength,

PVOID ioBuffer);

Parameter descriptions

iIndex: Specify the serial number of the operating device

iChipSelect: Chip selection, bit 7 is 0 to ignore chip select control, bit 7 is 1 for chip select

operation.

oLength: Number of bytes of data to send

iLength: The length of data to be read in bytes

ioBuffer: Point to a buffer, place the data to be written-out from MOSI, the returned data is

the data read-in from MISO.

Return value

The return value is 1 on success and 0 on failure

3.3.10 CH347SPI_WriteRead

Function description

This function is used to write and read SPI data streams

Function definitions

BOOL WINAPI

CH347SPI_WriteRead(ULONG iIndex,

ULONG iChipSelect,

ULONG iLength,

PVOID ioBuffer);

Parameter descriptions

iIndex: Specify the serial number of the operating device

iChipSelect: Chip selection, bit 7 is 0 to ignore chip select control, bit 7 is 1 for chip select

operation.

iLength: Number of bytes of data to send

ioBuffer: Point to a buffer, place the data to be written-out from MOSI, the returned data is

CH347 Application Development Manual https://wch.cn

V1.6 16

the data read-in from MISO.

Return value

The return value is 1 on success and 0 on failure

3.3.11 CH347StreamSPI4

Function description

This function is used to process the SPI data stream, read data while writing

Function definitions

BOOL WINAPI

CH347StreamSPI4(ULONG iIndex,

 ULONG iChipSelect,

 ULONG iLength,

 PVOID ioBuffer);

Parameter descriptions

iIndex: Specify the serial number of the operating device

iChipSelect: Chip selection, bit 7 is 0 to ignore chip select control, bit 7 is 1 for chip select

operation.

iLength: Number of bytes of data to send

ioBuffer: Point to a buffer, place the data to be written-out from MOSI, the returned data is

the data read-in from MISO.

Return value

The return value is 1 on success and 0 on failure

3.4 JTAG functions

3.4.1 Operation process

After turning on the device, Use CH347Jtag_INIT to initialize the device;

Use CH347Jtag_SwitchTapState(0) to reset the JTAG TAP status of the target device to

Test-Logic-Reset, you can use the corresponding function to switch to SHIFT-DR/SHIFT-IR for read/write

operations as required, there are two ways to read/write, which are bitband mode and batch fast mode, select

according to actual use.

The function call flowchart is as follows:

CH347 Application Development Manual https://wch.cn

V1.6 17

Figure 3. 4.1 JTAG Function operation flowchart

For details about the function, see the following.

3.4.2 CH347Jtag_INIT

Function description

This function is used to initialize the JTAG interface and set the communication speed.

Function definitions

BOOL WINAPI

CH347Jtag_INIT(ULONG iIndex,

UCHAR iClockRate);

Parameter descriptions

iIndex: Specify the serial number of the operating device

iClockRate: Communication speed; The value ranges from 0 to 5, a larger value indicates a

faster communication speed

Return value

The return value is 1 on success and 0 on failure

3.4.3 CH347Jtag_TmsChange

Function description

This function is used to pass in the TMS value for the corresponding state switching, the TMS value

refers to the JTAG TAP state machine.

Function definitions

BOOL WINAPI

CH347Jtag_TmsChange(ULONG iIndex,

PUCHAR tmsValue,

ULONG Step,

CH347 Application Development Manual https://wch.cn

V1.6 18

ULONG Skip);

Parameter descriptions

iIndex: Specify the serial number of the operating device

tmsValue: TMS bit value for switching, in bytes

Step: Number of valid TMS bits stored within tmsValue

Skip: Valid start bit

Return value

The return value is 1 on success and 0 on failure

Example

Refer to the JTAG TAP state machine as shown in the figure below. The example uses

CH347Jtag_TmsChange to complete the transition from the IDLE state to Shift-IR for reading and writing,

then switches to Shift-DR for reading and writing, and finally returns to the IDLE state.

Pseudocode example

// Enter the processing flow (TMS values can refer to the TAP state machine in the above image).

// Initialise TMS value.

tmsValue = [0x03]

// State transition:IDLE --> Select DR --> Select IR --> Capture IR --> Shift-IR

// TMS Value: 1 1 0 0

call CH347Jtag_TmsChange(iIndex, tmsValue, 4, 0)

// Perform read and write operations on Shift-IR.

call CH347Jtag_IoScan(iIndex, ir_code, ir_len, true)

// Reinitialise TMS value.

CH347 Application Development Manual https://wch.cn

V1.6 19

tmsValue = [0x03]

// State transition: Exit-IR --> Update IR --> Select DR --> Capture DR --> Shift-DR

// TMS Value: 1 1 0 0

call CH347Jtag_TmsChange(iIndex, tmsValue, 4, 0)

// Perform read and write operations on Shift-DR.

call CH347Jtag_IoScan(iIndex, dr_code, dr_len, true)

// Reinitialise TMS value.

tmsValue = [0x01]

// State transition: Exit-DR --> Update DR --> IDLE

// TMS Value: 1 0

call CH347Jtag_TmsChange(iIndex, tmsValue, 2, 0)

3.4.4 CH347Jtag_IoScan

Function description

This function is mainly used for SHIFT-DR/IR state to perform data reading and writing, and finally

switch to EXIT-DR/IR at the end of reading and writing, state switching can be used with

CH347Jtag_TmsChange.

Function definitions

BOOL WINAPI

CH347Jtag_IoScan(ULONG iIndex,

PUCHAR DataBits,

ULONG DataBitsNb,

BOOL IsRead);

Parameter descriptions

iIndex: Specify the serial number of the operating device

DataBits: Data that needs to be transferred

DataBitsNb: Number of bits of data to be transmitted

IsRead: Whether the data needs to be read

Return value

The return value is 1 on success and 0 on failure

3.4.5 CH347Jtag_IoScanT

Function description

This function can be called several times in the SHIFT-DR/IR state to realize data reading and writing,

through the IsLastPkt to determine whether the end of reading and writing to switch to EXIT-DR/IR, state

switching can be used with CH347Jtag_TmsChange.

Function definitions

BOOL WINAPI

CH347Jtag_IoScanT(ULONG iIndex,

PUCHAR DataBits,

ULONG DataBitsNb,

BOOL IsRead,

BOOL IsLastPkt);

Parameter descriptions

iIndex: Specify the serial number of the operating device

CH347 Application Development Manual https://wch.cn

V1.6 20

DataBits: Data that needs to be transferred

DataBitsNb: Number of bits of data to be transmitted

IsRead: Whether the data needs to be read

IsLastPkt: Whether it is the last packet of data, if TRUE, the last 1bit of data will be switched

to EXIT-DR/IR for transmission

Return value

The return value is 1 on success and 0 on failure

3.4.6 CH347Jtag_Reset

Function description

This function can reset the Tap status function. The TMS is high for more than six clocks, Tap state on

Test-Logic Reset

Function definitions

BOOL WINAPI

CH347Jtag_Reset(ULONG iIndex);

Parameter descriptions

iIndex: Specify the serial number of the operating device

Return value

The return value is 1 on success and 0 on failure

3.4.7 CH347Jtag_ResetTrst

Function description

This function perform TRST operations to reset hardware

Function definitions

BOOL WINAPI

CH347Jtag_ResetTrst(ULONG iIndex,

BOOL iLevel);

Parameter descriptions

iIndex: Specify the serial number of the operating device

iLevel: 0=Set lower,1=Set High

Return value

The return value is 1 on success and 0 on failure

3.4.8 CH347Jtag_WriteRead

Function description

This function reads and writes SHIFT-DR /IR state data in bitband mode, suitable for read and write

small amounts of data. Such as command operation, state machine switching and other control transmission

operations. If you need to transfer bulk data, you can use the CH347Jtag_WriteRead_Fast command package

to transfer data in bytes.

Function definitions

BOOL WINAPI

CH347Jtag_WriteRead(ULONG iIndex,

BOOL IsDR,

ULONG iWriteBitLength,

PVOID iWriteBitBuffer,

PULONG oReadBitLength,

CH347 Application Development Manual https://wch.cn

V1.6 21

PVOID oReadBitBuffer)

Parameter descriptions

iIndex: Specify the serial number of the operating device

IsDR: Determine the switchover status for read and write,

TRUE= SHIFT-DR, FALSE=SHIFT-IR

iWriteBitLength: The length of data to be written

iWriteBitBuffer: Point to a buffer, place the data to be written-out.

oReadBitLength: Point to a length element, the return value is the actual length of data read.

oReadBitBuffer: Point to a large enough buffer, used to save data that has been read.

Return value

The return value is 1 on success and 0 on failure

Annotations

This function uses the value of IsDR to determine whether to operate the JTAG state to switch to

SHIFT-DR or SHIFT-IR state, and then switch back to RUN-TEST state after read and write data in bitband

mode, the status switch path is as follows:

Run-Test->Shift-IR/DR..->Exit IR/DR -> Run-Test

3.4.9 CH347Jtag_WriteRead_Fast

Function description

This function is used to switch to the SHIFT-IR /DR state for batch data read/write, for multi-byte

sequential read/write, such as JTAG firmware download operation.

Function definitions

BOOL WINAPI

CH347Jtag_WriteRead_Fast(ULONG iIndex,

BOOL IsDR,

ULONG iWriteBitLength,

PVOID iWriteBitBuffer,

PULONG oReadBitLength,

PVOID oReadBitBuffer);

Parameter descriptions

iIndex: Specify the serial number of the operating device.

IsDR: Determine the switchover status for read and write.

TRUE = SHIFT-DR, FALSE = SHIFT-IR.

iWriteBitLength: The length of bytes to write out data.

iWriteBitBuffer: Point to a buffer, place the data to be written-out.

oReadBitLength: Point to a length element, the return value is the actual length of data read.

oReadBitBuffer: Point to a large enough buffer, used to save data that has been read.

Return value

The return value is 1 on success and 0 on failure

Annotations

This function is similar to CH347Jtag_WriteRead, but this function is used for bulk data reads and

writes, read and write data in byte.

3.4.10 CH347Jtag_WriteReadEx

Function description

CH347 Application Development Manual https://wch.cn

V1.6 22

This function performs shift IR/DR data read and write in bit-banding mode. It is suitable for reading

and writing small amounts of data, such as control transfers for instruction operations and state machine

switching. For bulk data transfers, it is recommended to use CH347Jtag_WriteReadEx_Fast.

CH347Jtag_WriteRead extension function, supports continuous read and write while remaining in the

Shift-DR/IR state, can be used in conjunction with CH347Jtag_TmsChange.

Function definitions

BOOL WINAPI

CH347Jtag_WriteReadEx(ULONG iIndex,

BOOL IsInDrOrIr,

BOOL IsDR,

ULONG iWriteBitLength,

PVOID iWriteBitBuffer,

PULONG oReadBitLength,

PVOID oReadBitBuffer);

Parameter descriptions

iIndex: Specify the serial number of the operating device.

IsInDrOrIr: TRUE: In SHIFT-DR read/write

FALSE: Run-Test->Shift-IR/DR.(data read/write).->Exit IR/DR -> Run-Test

IsDR: Determine the switchover status for read and write.

TRUE = SHIFT-DR, FALSE = SHIFT-IR.

iWriteBitLength: The length of bytes to write out data.

iWriteBitBuffer: Point to a buffer, place the data to be written-out.

oReadBitLength: Point to a length element, the return value is the actual length of data read.

oReadBitBuffer: Point to a large enough buffer, used to save data that has been read.

Return value

The return value is 1 on success and 0 on failure

3.4.11 CH347Jtag_WriteRead_FastEx

Function description

This function is used to switch to the SHIFT-IR /DR state for batch data read/write, for multi-byte

sequential read/write, such as JTAG firmware download operation.

The CH347Jtag_WriteRead_Fast extended function supports continuous reading and writing while

remaining in the Shift-DR/IR state, and can be used in conjunction with CH347Jtag_TmsChange.

Function definitions

BOOL WINAPI

CH347Jtag_WriteRead_FastEx(ULONG iIndex,

BOOL IsInDrOrIr,

BOOL IsDR,

ULONG iWriteBitLength,

PVOID iWriteBitBuffer,

PULONG oReadBitLength,

PVOID oReadBitBuffer);

Parameter descriptions

iIndex: Specify the serial number of the operating device.

IsInDrOrIr: TRUE: In SHIFT-DR read/write

CH347 Application Development Manual https://wch.cn

V1.6 23

FALSE: Run-Test->Shift-IR/DR.(data read/write).->Exit IR/DR -> Run-Test

IsDR: Determine the switchover status for read and write.

TRUE = SHIFT-DR, FALSE = SHIFT-IR.

iWriteBitLength: The length of bytes to write out data.

iWriteBitBuffer: Point to a buffer, place the data to be written-out.

oReadBitLength: Point to a length element, the return value is the actual length of data read.

oReadBitBuffer: Point to a large enough buffer, used to save data that has been read.

Return value

The return value is 1 on success and 0 on failure

Annotations

This function is similar to CH347Jtag_WriteReadEx, but this function is used for bulk data reads and

writes, read and write data in byte.

3.4.12 CH347Jtag_SwitchTapState

Function description

This function is used to switch the JTAG state machine state

Function definitions

BOOL CH347Jtag_SwitchTapState(UCHAR TapState)

Parameter description

TapState: Enter the serial number to switch the status.

Return value

The return value is 1 on success and 0 on failure

Annotations

The TapState status switch is described as follows:

0: Reset the status of the target device to Test-Logic Reset

1: Follow the previous state to enter Run-Test/Idle

2: Run-Test/Idle -> Shift-DR

3: Shift-DR -> Run-Test/Idle

4: Run-Test/Idle -> Shift-IR

5: Shift-IR -> Run-Test/Idle

6: Exit1-DR/IR -> Update-DR/IR ->Run-Test-Idle

3.4.13 CH347Jtag_SwitchTapStateEx

Function description

This function is single-step switching of the JTAG state machine allows for the specification of the

operating device iIndex.

Function definitions

BOOL CH347Jtag_SwitchTapState(ULONG iIndex,

UCHAR TapState)

Parameter description

iIndex: Specify the serial number of the operating device.

TapState: Enter the serial number to switch the status.

Return value

The return value is 1 on success and 0 on failure

Annotations

The return value is 1 on success and 0 on failure

CH347 Application Development Manual https://wch.cn

V1.6 24

3.4.14 CH347Jtag_ByteWriteDR

Function description

This function is used to switch the JTAG state machine to SHIFT-DR state in byte units, allowing for

multi-byte sequential read and write.

Function definitions

BOOL WINAPI

CH347Jtag_ByteWriteDR(ULONG iIndex,

 ULONG iWriteLength,

 PVOID iWriteBuffer);

Parameter descriptions

iIndex: Specify the serial number of the operating device

iWriteLength: The length of bytes to write-out data.

iWriteBuffer: Point to a buffer, place the data to be written-out.

Return value

The return value is 1 on success and 0 on failure

3.4.15 CH347Jtag_ByteReadDR

Function description

This function is used to switch the JTAG state machine to SHIFT-DR state in byte units, allowing for

multi-byte sequential read and write.

Function definitions

BOOL WINAPI

CH347Jtag_ByteReadDR(ULONG iIndex,

 PULONG oReadLength,

 PVOID oReadBuffer);

Parameter descriptions

iIndex: Specify the serial number of the operating device

oReadLength: The length of bytes to be read

oReadBuffer: Point to a buffer, place the data to be read.

Return value

The return value is 1 on success and 0 on failure

3.4.16 CH347Jtag_ByteWriteIR

Function description

This function is used to switch the JTAG state machine to SHIFT-IR state in byte units, allowing for

multi-byte sequential read and write.

Function definitions

BOOL WINAPI

CH347Jtag_ByteWriteIR(ULONG iIndex,

ULONG iWriteLength,

PVOID iWriteBuffer);

Parameter descriptions

iIndex: Specify the serial number of the operating device

iWriteLength: The length of bytes to write-out data.

iWriteBuffer: Point to a buffer, place the data to be written-out.

CH347 Application Development Manual https://wch.cn

V1.6 25

Return value

The return value is 1 on success and 0 on failure

3.4.17 CH347Jtag_ByteReadIR

Function description

This function is used to switch the JTAG state machine to SHIFT-IR state in byte units, allowing for

multi-byte sequential read and write.

Function definitions

BOOL WINAPI

CH347Jtag_ByteReadIR(ULONG iIndex,

 PULONG oReadLength,

 PVOID oReadBuffer);

Parameter descriptions

iIndex: Specify the operating device number

oReadLength: The length of bytes to be read.

oReadBuffer: Point to a buffer, place the data to be read

Return value

The return value is 1 on success and 0 on failure

3.4.18 CH347Jtag_BitWriteDR

Function description

This function is used to switch the JTAG state machine to shift-DR state, data is read and write in

bitband mode.

Function definitions

BOOL WINAPI

CH347Jtag_BitWriteDR(ULONG iIndex,

 ULONG iWriteLength,

 PVOID iWriteBuffer);

Parameter descriptions

iIndex: Specify the serial number of the operating device.

iWriteLength: The length of bytes to write-out data.

iWriteBuffer: Point to a buffer, place the data to be written-out.

Return value

The return value is 1 on success and 0 on failure

3.4.19 CH347Jtag_BitWriteIR

Function description

This function is used to switch the JTAG state machine to shift-IR state, data is read and write in

bitband mode.

Function definitions

BOOL WINAPI

CH347Jtag_BitWriteIR(ULONG iIndex,

ULONG iWriteLength,

PVOID iWriteBuffer);

Parameter descriptions

iIndex: Specify the serial number of the operating device.

CH347 Application Development Manual https://wch.cn

V1.6 26

iWriteLength: The length of bytes to write-out data.

iWriteBuffer: Point to a buffer, place the data to be written-out.

Return value

The return value is 1 on success and 0 on failure

3.4.20 CH347Jtag_BitReadIR

Function description

This function is used to switch the JTAG state machine to SHIFT-IR state, data is read and write in

bitband mode.

Function definitions

BOOL WINAPI

CH347Jtag_BitReadIR(ULONG iIndex,

PULONG oReadLength,

PVOID oReadBuffer);

Parameter descriptions

iIndex: Specify the serial number of the operating device.

oReadLength: The length of bytes to be read.

oReadBuffer: Point to a buffer, place the data to be read.

Return value

The return value is 1 on success and 0 on failure

3.4.21 CH347Jtag_BitReadDR

Function description

This function is used to switch the JTAG state machine to SHIFT-DR state in byte units, allowing for

multi-byte sequential read and write.

Function definitions

BOOL WINAPI

CH347Jtag_BitReadDR(ULONG iIndex,

 PULONG oReadLength,

 PVOID oReadBuffer);

Parameter descriptions

iIndex: Specify the serial number of the operating device.

oReadLength: The length of bytes to be read.

oReadBuffer: Point to a buffer, place the data to be read.

Return value

The return value is 1 on success and 0 on failure

3.5 I2C functions

3.5.1 Operation process

Open the specified operating device to get the serial number of the device, set the I2C interface

speed/SCL frequency of the device, and perform I2C read/write operations. The function call flowchart is as

follows:

CH347 Application Development Manual https://wch.cn

V1.6 27

Figure 3.5.1 I2C operation flowchart

For details about the function, see the following.

3.5.2 Related data types

EEPROM types

typedef enum _EEPROM_TYPE {

ID_24C01,

 ID_24C02,

 ID_24C04,

 ID_24C08,

 ID_24C16,

 ID_24C32,

 ID_24C64,

 ID_24C128,

 ID_24C256,

 ID_24C512,

 ID_24C1024,

 ID_24C2048,

 ID_24C4096

} EEPROM_TYPE;

3.5.3 CH347I2C_Set

Function description

This function is used to specify the operating device and set the I2C interface speed/SCL frequency.

Function definitions

BOOL WINAPI

CH347I2C_Set(ULONG iIndex,

ULONG iMode)

Parameter descriptions

iIndex: Specify the serial number of the operating device

iMode: Set the mode

CH347 Application Development Manual https://wch.cn

V1.6 28

 Bit 2-0: 000 = low speed /20KHz,

 001 = standard /100KHz(default),

 010 = fast speed /400KHz,

 011 = high speed /750KHz,

 100 = 50KHz, 101 = 200KHz, 110 = 1MHz

 Bit 7-3: Reserved as 0

Return value

The return value is 1 on success and 0 on failure

3.5.4 CH347I2C_SetStretch

Function description

This function is used to set the clock extension function.

Function definitions

BOOL WINAPI

CH347I2C_SetStretch(ULONG iIndex,

BOOL iEnable);

Parameter descriptions

 iIndex: Specify the serial number of the operating device

 iEnable: Whether to enable the clock extension function

Return value

The return value is 1 on success and 0 on failure

3.5.5 CH347I2C_SetDelaymS

Function description

This function is used to set the hardware asynchronous delay and will return soon after being called,

specifying the number of milliseconds of delay before the next stream operation.

Function definitions

BOOL WINAPI

CH347I2C_SetDelaymS(ULONG iIndex,

ULONG iDelay) ;

Parameter descriptions

iIndex: Specify the serial number of the operating device.

iDelay: Specifies the number of milliseconds to delay.

Return value

The return value is 1 on success and 0 on failure

3.5.6 CH347I2C_SetDriverMode

Function description

This function is used to set the I2C pins drive mode.

Function definitions

BOOL WINAPI

CH347I2C_SetDriverMode(ULONG iIndex,

UCHAR iMode) ;

Parameter descriptions

iIndex: Specify the serial number of the operating device.

iMode: 0=open-drain mode; 1=push-pull mode

CH347 Application Development Manual https://wch.cn

V1.6 29

Return value

The return value is 1 on success and 0 on failure

3.5.7 CH347I2C_SetIgnoreNack

Function description

This function is used to process I2C answering mechanism, limited to CH347T applications, set

whether to ignore the device NACK and continue to send data.

Function definitions

BOOL WINAPI

CH347I2C_SetIgnoreNack(ULONG iIndex,

UCHAR iMode) ;

Parameter descriptions

iIndex: Specify the serial number of the operating device.

iMode: 0=The transmission stops upon receipt of NACK, 1=The transmission ignores the

device NACK response.

Return value

The return value is 1 on success and 0 on failure

3.5.8 CH347I2C_SetAckClk_DelayuS

Function description

This function is used to set the low cycle delay time for the 8th clock, applicable only to CH347T.

Function definitions

BOOL WINAPI

CH347I2C_SetAckClk_DelayuS(ULONG iIndex,

ULONG iDelay) ;

Parameter descriptions

iIndex: Specify the serial number of the operating device.

iDelay: Specified delay in microseconds.

Return value

The return value is 1 on success and 0 on failure

3.5.9 CH347StreamI2C

Function description

This function is used to process I2C data streams and implement I2C data read/write

Function definitions

BOOL WINAPI

CH347StreamI2C(ULONG iIndex,

ULONG iWriteLength,

PVOID iWriteBuffer,

ULONG iReadLength,

PVOID oReadBuffer)

Parameter descriptions

iIndex: Specify the serial number of the operating device

iWriteLength: The length of bytes to write-out data

 iWriteBuffer: Point to a buffer, place the data to be written-out. The first byte is usually the I2C

 device address and read/write direction bit, if the address length exceeds 7, this byte

CH347 Application Development Manual https://wch.cn

V1.6 30

 can still be written, and so on.

iReadLength: The length of bytes to be read

oReadBuffer: Point to a buffer, the function returns the data read in

Return value

The return value is 1 on success and 0 on failure

Annotations

Write-only example:CH347StreamI2C(iIndex, iWriteLength, iWriteBuffer, 0, NULL)

Read-only example:

CH347StreamI2C(iIndex, iWriteLength, iWriteBuffer, iReadLength, oReadBuffer)

In this example, iWriteBuffer specifies the I2C device address and the register address to be operated,

and iWriteLength is the actual data length of iWriteBuffer.

3.5.10 CH347StreamI2C_RetACK

Function description

This function is used to process the I2C data stream, realize the reading and writing of I2C data, and

return the number of ACKs generated by the read and write operations.

Function definitions

BOOL WINAPI

CH347StreamI2C_RetACK(ULONG iIndex,

ULONG iWriteLength,

PVOID iWriteBuffer,

ULONG iReadLength,

PVOID oReadBuffer,

PULONG rAckCount)

Parameter descriptions

iIndex: Specify the serial number of the operating device

iWriteLength: Number of data bytes to be written out

 iWriteBuffer: Points to a buffer, placed ready to write the data, the first byte is usually the I2C

 device address and read/write direction bit, if the address length is more than 7, then

 this byte can still be written and so on.

iReadLength: Number of data bytes to be read

oReadBuffer: Points to a buffer where the function returns with the read data.

rAckCount: Points to the number of ACKs returned for reads and writes

Return value

The return value is 1 on success and 0 on failure

3.5.11 CH347ReadEEPROM

Function description

This function is used to read data blocks to EEPROM

Function definitions

BOOL WINAPI

CH347WriteEEPROM(ULONG iIndex,

EPROM_TYPE iEepromID,

ULONG iAddr,

ULONG iLength,

PUCHAR iBuffer)

CH347 Application Development Manual https://wch.cn

V1.6 31

Parameter descriptions

iIndex: Specify the serial number of the operating device

iEepromID: Specify the EEPROM model

iAddr: Specify the address of the data unit

iLength: The length of bytes to be read

iBuffer: Point to a buffer, place the data to be read.

Return value

The return value is 1 on success and 0 on failure

Annotations

Refer to _EEPROM_TYPE for the models specified by iEepromID

3.5.12 CH347WriteEEPROM

Function description

This function is used to write data blocks to EEPROM

Function definitions

BOOL WINAPI

CH347WriteEEPROM(ULONG iIndex,

EEPROM_TYPE iEepromID,

ULONG iAddr,

ULONG iLength,

PUCHAR iBuffer)

Parameter descriptions

iIndex: Specify the serial number of the operating device

iEepromID: Specify the EEPROM model

iAddr: Specify the address of the data unit

iLength: Length of data bytes to be written-out

iBuffer: Point to a buffer, place the data to be written-out.

Return value

The return value is 1 on success and 0 on failure

Annotations

Refer to _EEPROM_TYPE for the models specified by iEepromID

4. Asynchronous serial interface functions

4.1 Public functions

4.1.1 Interface dynamic hot plug detection

Detecting the dynamic hot plug information of CH347 UART interface can be implemented by

CH347Uart_SetDeviceNotify function, the code can be referred to 3.2.7 Interface dynamic hot plug

detection.

Enable CH347 UART serial port USB plug and unplug monitoring:

CH347Uart_SetDeviceNotify(DevIndex, USBUartDevID, UsbDevPnpNotify);

Disable CH347 UART serial port USB plug and unplug monitoring, be sure to close the program when

it exits.

CH347 Application Development Manual https://wch.cn

V1.6 32

CH347Uart_SetDeviceNotify(DevIndex, USBUartDevID, NULL);

The monitored USBUartDevID can be the following string or your own ID content.

//MODE0 UART0

#define USBID_VCP_Mode0_UART0 "VID_1A86&PID_55DA&MI_00\0"

//MODE0 UART1

#define USBID_VCP_Mode0_UART1 "VID_1A86&PID_55DA&MI_01\0"

//MODE1 UART

#define USBID_VEN_Mode1_UART1 "VID_1A86&PID_55DB&MI_00\0"

//MODE2 UART

#define USBID_HID_Mode2_UART1 "VID_1A86&PID_55DB&MI_00\0"

//MODE3 UART

#define USBID_VEN_Mode3_UART1 "VID_1A86&PID_55DB&MI_00\0"

4.1.2 Device enumeration operation

In this interface library, the API implements corresponding operation by specifying the device serial

number, the device serial number is generated during the insertion of devices one by one according to their

insertion order. The device enumeration function can be implemented by opening the corresponding device

serial number through the device Open function and determining whether the device exists or is valid

according to the function return value.

Figure 4.1.2 Device enumeration flowchart

4.2 HID/VCP UART functions

4.2.1 Operation process

After the device is enabled, use the CH347Uart_Open function to open the serial port, set the

corresponding serial port parameters and then use the CH347Uart_Init function to set the serial port, then

you can use the CH347Uart_Write or CH347Uart_Read function to send and receive serial port data.

CH347 Application Development Manual https://wch.cn

V1.6 33

Figure 4.2.1 HID Serial port operation flowchart

For details about the function, see the following.

4.2.2 CH347Uart_Open

Function description

This function is used to open CH347 serial port

Function definitions

HANDLE WINAPI

CH347Uart_Open(ULONG iIndex)

Parameter description

iIndex: Specify the serial number of the operating device

Return value

The return value is 1 on success and 0 on failure

4.2.3 CH347Uart_Close

Function description

This function is used to close HID serial port

Function definitions

BOOL WINAPI

CH347Uart_Close(ULONG iIndex)

Parameter description

iIndex: Specify the serial number of the operating device

Return value

The return value is 1 on success and 0 on failure

4.2.4 CH347Uart_SetDeviceNotify

Function description

This function is used to set the device time notification program, can be used for dynamic hot plug

detection of CH347 UART.

Function definitions

CH347 Application Development Manual https://wch.cn

V1.6 34

BOOL WINAPI

CH347Uart_SetDeviceNotify(ULONG iIndex,

 PCHAR iDeviceID,

 mPCH347_NOTIFY_ROUTINE iNotifyRoutine)

Parameter descriptions

iIndex: Specify the serial number of the operating device.

I DeviceID: Optional parameter, pointing to a string, specifies the ID of the monitored device,

 the string terminated with \0.

 iNotifyRoutine: Specify the device event callback program. If it is NULL, event notification is

 cancelled. Otherwise the program is called when the event is detected.

Return value

The return value is 1 on success and 0 on failure

4.2.5 CH347Uart_Init

Function description

This function is used to initialize serial port parameters

Function definitions

BOOL WINAPI

CH347Uart_Init(ULONG iIndex,

 DWORD BaudRate,

 UCHAR ByteSize,

 UCHAR Parity,

 UCHAR StopBits,

 UCHAR ByteTimeout)

Parameter descriptions

iIndex: Specify the serial number of the operating device.

 BaudRate: Baud rate value.

ByteSize: Data bits(5, 6, 7, 8, 16)

Parity: Parity bits(0: None; 1: Odd; 2: Even; 3: Mark; 4: Space)

StopBits: Stop bits (0: stop bit; 1: .5 stop bit; 2: stop bit)

ByteTimeout: Byte timeout time, the unit is 100uS.

Return value

The return value is 1 on success and 0 on failure

4.2.6 CH347Uart_SetTimeout

Function description

This function is used to set the timeout for USB data read/write

Function definitions

BOOL WINAPI

CH347Uart_SetTimeout(ULONG iIndex,

 ULONG iWriteTimeout,

 ULONG iReadTimeout)

Parameter descriptions

iIndex: Specify the serial number of the operating device

iWriteTimeout: Specify the timeout for USB write-out data blocks,

 the unit is millisecond (mS)

CH347 Application Development Manual https://wch.cn

V1.6 35

 0xFFFFFFFF specifies no timeout (default)

iReadTimeout: Specify the timeout for USB read data blocks,

 the unit is milliseconds (mS)

 0xFFFFFFFF specifies no timeout (default)

Return value

The return value is 1 on success and 0 on failure

4.2.7 CH347Uart_Read

Function description

This function is used to read serial port data

Function definitions

BOOL WINAPI

CH347Uart_Read(ULONG iIndex,

 PVOID oBuffer,

 PULONG ioLength)

Parameter descriptions

iIndex: Specify the serial number of the operating device

oBuffer: Point to a large enough buffer, place the data to be read.

 ioLength: Point to the length unit. The input is the length to be read and the return is the actual

 read length.

Return value

The return value is 1 on success and 0 on failure

4.2.8 CH347Uart_Write

Function description

This function is used to send serial port data

Function definitions

BOOL WINAPI

CH347Uart_Write(ULONG iIndex,

PVOID iBuffer,

PULONG ioLength)

Parameter descriptions

iIndex: Specify the serial number of the operating device

iBuffer: Point to a buffer, place the data to be written-out.

 ioLength: Point to the length unit. The input is the length to be written-out, and the

 return is the actual length.

Return value

The return value is 1 on success and 0 on failure

4.2.9 CH347Uart_QueryBufUpload

Function description

This function is used to query how many bytes are unfetched in the buffer

Function definitions

BOOL WINAPI

CH347Uart_QueryBufUpload(ULONG iIndex,

 LONGLONG *RemainBytes);

CH347 Application Development Manual https://wch.cn

V1.6 36

Parameter descriptions

iIndex: Specify the serial number of the operating device

RemainBytes: Returns the number of unfetched bytes in the current buffer

Return value

The return value is 1 on success and 0 on failure

4.3 GPIO functions

4.3.1 Operation process

When operating GPIO, use CH347OpenDevice/CH347Uart_Open to open the device.

After using CH347GPIO_Get to get the current GPIO status, use CH347GPIO_Set to set the input and

output status of GPIO as required.

You can call CH347GPIO_Get and CH347GPIO_Set to get and control GPIO.

The GPIO interrupt function can be realized by using CH347SetIntRoutine and CH347ReadInter, and

the call to CH347AbortInter to give up the interrupt data read operation.

Figure 4.3.1 GPIO Operation flowchart

For details about the function, see the following.

4.3.2 CH347GPIO_Get

Function description

This function is used to get the current GPIO input/output status of the device

Function definitions

BOOL WINAPI

CH347GPIO_Get(ULONG iIndex,

 UCHAR *iDir,

 UCHAR *iData)

CH347 Application Development Manual https://wch.cn

V1.6 37

Parameter descriptions

iIndex: Specify the serial number of the operating device

iDir: Pin direction: GPIO 0-7 corresponding bit 0-7. 0: input; 1: output

iData: GPIO level status: GPIO 0-7 corresponds to bits 0-7, where 0 indicates low level

and 1 indicates high level

Return value

The return value is 1 on success and 0 on failure

4.3.3 CH347GPIO_Set

Function description

This function is used to set the I/O direction and output state of CH347-GPIO

Function definitions

BOOL WINAPI

CH347GPIO_Set(ULONG iIndex,

UCHAR iEnable,

 UCHAR iSetDirOut,

 UCHAR iSetDataOut)

Parameter descriptions

iIndex: Specify the serial number of the operating device

iEnable: Data validity flag: corresponding bit 0-7, corresponding to GPIO 0-7.

iSetDirOut: Set the I/O direction, If a bit is 0, the corresponding pin is an input pin, if a bit is 1,

the corresponding pin is an output pin.

GPIO 0-7 corresponds to bits 0-7

iSetDataOut: Output data. If the I/O direction is output, then the corresponding pin outputs low

when a bit is 0 and high when it is 1.

Return value

The return value is 1 on success and 0 on failure

4.3.4 CH347SetIntRoutine

Function description

This function is used to set the CH347 - GPIO interrupt service program.

Function definitions

BOOL WINAPI

CH347SetIntRoutine(ULONG iIndex,

UCHAR Int0PinN,

UCHAR Int0TripMode,

 UCHAR Int1PinN,

 UCHAR Int1TripMode,

 mPCH347_INT_ROUTINE iIntRoutine);

Parameter descriptions

iIndex: Specify the serial number of the operating device

Int0PinN: Interrupt GPIO pin number, greater than 7: do not enable this

 interrupt source; for 0-7 corresponds to GPIO 0-7

Int0TripMode: Interrupt Type: 00: Falling edge trigger; 01:Rising edge trigger.

 02: double edge trigger; 03: Reserved.

Int1PinN: Interrupt GPIO pin number, greater than 7: do not enable this

CH347 Application Development Manual https://wch.cn

V1.6 38

 interrupt source; for 0-7 corresponds to GPIO 0-7

Int1TripMode: Interrupt Type: 00: Falling edge trigger; 01:Rising edge trigger.

 02: double edge trigger; 03: Reserved.

iIntRoutine: Specify the interrupt service program, if it is NULL, the interrupt service

 will be canceled, otherwise, the program will be called at the time of

 interrupt.

Return value

The return value is 1 on success and 0 on failure

4.3.5 CH347ReadInter

Function description

This function is used to read interrupt data

Function definitions

BOOL WINAPI

CH347ReadInter(ULONG iIndex,

PUCHAR iStatus)

Parameter descriptions

iIndex: Specify the serial number of the operating device

iStatus: Points to the byte unit, used to save the read GPIO pin status data, refer

 to the bit description below.

Return value

The return value is 1 on success and 0 on failure

4.3.6 CH347AbortInter

Function description

This function is used to cancel reading interrupt data

Function definitions

BOOL WINAPI

CH347AbortInter(ULONG iIndex)

Parameter descriptions

iIndex: Specify the serial number of the operating device

Return value

The return value is 1 on success and 0 on failure

	1. Introduction
	2. Interface description
	3. Synchronous serial interface
	3.1 Related data types
	3.1.1 SPI controller information
	3.1.2 Device information

	3.2 Public operation functions
	3.2.1 CH347OpenDevice
	3.2.2 CH347CloseDevice
	3.2.3 CH347SetDeviceNotify
	3.2.4 CH347GetDeviceInfor
	3.2.5 CH347GetSerialNumber
	3.2.6 CH347GetChipType
	3.2.7 CH347GetVersion
	3.2.8 CH347SetTimeout
	3.2.9 Interface dynamic hot plug detection
	3.2.10 Device enumeration operation

	3.3 SPI functions
	3.3.1 Operation process
	3.3.2 CH347SPI_Init
	3.3.3 CH347SPI_SetFrequency
	3.3.4 CH347SPI_SetDataBits
	3.3.5 CH347SPI_GetCfg
	3.3.6 CH347SPI_ChangeCS
	3.3.7 CH347SPI_SetChipSelect
	3.3.8 CH347SPI_Write
	3.3.9 CH347SPI_Read
	3.3.10 CH347SPI_WriteRead
	3.3.11 CH347StreamSPI4

	3.4 JTAG functions
	3.4.1 Operation process
	3.4.2 CH347Jtag_INIT
	3.4.3 CH347Jtag_TmsChange
	3.4.4 CH347Jtag_IoScan
	3.4.5 CH347Jtag_IoScanT
	3.4.6 CH347Jtag_Reset
	3.4.7 CH347Jtag_ResetTrst
	3.4.8 CH347Jtag_WriteRead
	3.4.9 CH347Jtag_WriteRead_Fast
	3.4.10 CH347Jtag_WriteReadEx
	3.4.11 CH347Jtag_WriteRead_FastEx
	3.4.12 CH347Jtag_SwitchTapState
	3.4.13 CH347Jtag_SwitchTapStateEx
	3.4.14 CH347Jtag_ByteWriteDR
	3.4.15 CH347Jtag_ByteReadDR
	3.4.16 CH347Jtag_ByteWriteIR
	3.4.17 CH347Jtag_ByteReadIR
	3.4.18 CH347Jtag_BitWriteDR
	3.4.19 CH347Jtag_BitWriteIR
	3.4.20 CH347Jtag_BitReadIR
	3.4.21 CH347Jtag_BitReadDR

	3.5 I2C functions
	3.5.1 Operation process
	3.5.2 Related data types
	3.5.3 CH347I2C_Set
	3.5.4 CH347I2C_SetStretch
	3.5.5 CH347I2C_SetDelaymS
	3.5.6 CH347I2C_SetDriverMode
	3.5.7 CH347I2C_SetIgnoreNack
	3.5.8 CH347I2C_SetAckClk_DelayuS
	3.5.9 CH347StreamI2C
	3.5.10 CH347StreamI2C_RetACK
	3.5.11 CH347ReadEEPROM
	3.5.12 CH347WriteEEPROM

	4. Asynchronous serial interface functions
	4.1 Public functions
	4.1.1 Interface dynamic hot plug detection
	4.1.2 Device enumeration operation

	4.2 HID/VCP UART functions
	4.2.1 Operation process
	4.2.2 CH347Uart_Open
	4.2.3 CH347Uart_Close
	4.2.4 CH347Uart_SetDeviceNotify
	4.2.5 CH347Uart_Init
	4.2.6 CH347Uart_SetTimeout
	4.2.7 CH347Uart_Read
	4.2.8 CH347Uart_Write
	4.2.9 CH347Uart_QueryBufUpload

	4.3 GPIO functions
	4.3.1 Operation process
	4.3.2 CH347GPIO_Get
	4.3.3 CH347GPIO_Set
	4.3.4 CH347SetIntRoutine
	4.3.5 CH347ReadInter
	4.3.6 CH347AbortInter

